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1. Abstract
Breast DCE-MRI segmentation and lesion detection is a crucial 
image analysis task for cancer detection and tissue characteriza-
tion. In this paper, a hard-clustering technique with Grammatical 
Fireworks algorithm (GFWA) is proposed to segment the breast 
MR images for lesion detection. GFWA is Swarm Programming 
(SP) method developed for automatic computer program gener-
ation in any arbitrary language. In this paper, GFWA is used to 
generate the cluster center for clustering the breast MR images. 
The segmentation process faces difficulties due to the presence of 
noise and intensity inhomogeneities in MR images. Therefore, at 
the outset, the MR images are denoised and intensity inhomogene-
ities are corrected in the preprocessing step. The preprocessed MR 
images are segmented using the proposed GFWA-based clustering 
technique. Finally, the lesions are extracted from the segmented 
images. The proposed method is applied to 10 DCE-MRI slices. 
The experimental results of the proposed method are compared 
with that of Grammatical Swarm (GS)-based clustering technique 
and K-means algorithm. Both quantitative and qualitative results 
demonstrate that the proposed method performs better than other 
methods.

2. Introduction
According to World Health Organization (WHO)’s report (WHO 
cancer prevention diagnosis screening breast cancer, https://www.

who.int/cancer/prevention/diagnosisscreening/ breast-cancer/en/), 
it is estimated that 6,27,000 women in the world have died from 
breast cancer and it is approximately 15% of all types of cancer 
deaths among women in 2018. Breast cancer is the most common 
cancer in women in India and accounts for 14% of all cancers in 
women [1, 2]. Organized and opportunistic screening programs in 
the developed countries result in a significant decrease in mortality 
caused due to breast cancer [3]. Recently, dynamic contrast-en-
hanced magnetic resonance imaging (DCE-MRI) is widely used 
for breast cancer detection, diagnosis, and treatment planning or 
surgery. Several methods have been developed for lesion detection 
and its characterization in breast DCE-MRI in the recent past. [4] 
proposed a fuzzy c-means (FCM) clustering-based segmentation 
method for the detection of breast lesions in 3D DCE-MR images. 
FCM was applied to an enhanced region of interest (ROI) selected 
by a human operator manually. After clustering, binarization of the 
lesion membership map was done and lesions were finally selected 
followed by connected- omponent labeling [5]. developed a lesion 
segmentation and characterization methodology. First, Laplacian 
filter was used to enhance the lesions in ROI selected by a hu-
man operator manually. Then, extracted morphology and texture 
features from lesions were utilized for characterization in benign 
and alignant lesions using a Multilayer perceptron (MLP) [6]. 
developed a breast tumor analysis method using texture features 
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and discrete wavelet transform (DWT). First, the active contour 
model was to segment the breast lesions in DCE-MRI. Texture 
features were extracted from segmented lesions and DWT was 
applied to the temporal texture features to extract the frequency 
characteristics from the lesion kinematics. Finally, the committee 
of support vector machines (SVM) for the classification. A Markov 
Random Field (MRF) model-based lesion segmentation in breast 
DCE-MRI was proposed in [7]. In this method, the first subtrac-
tion image was generated by subtracting a pre- contrasted image 
from 1st post-contrast image, and then ROI was selected from the 
subtraction image. The Iterative Conditional Mode (ICM) meth-
od was used to obtain the maximum a posteriori (MAP) estimate 
of the class membership of lesion and non-lesion [8]. proposed 
Improved Markov Random Field (IMRF) for lesion segmentation 
in breast DCE-MRI. The prior distributions of the class members 
were modeled as a ratio of conditional probability distributions of 
similar pixels and non-similar ones in a neighborhood. An adaptive 
moment preserving method was proposed by [9] (Wei et al., 2012) 
to segment the fibroglandular tissue in breast DCE-MRI. [10] 
(Chang et al., 2012) developed a computer-aided diagnosis (CAD) 
system for the characterization of breast mass lesions in benign 
and malignant breast tumors in DCE-MRI. [11] (Jayender et al., 
2013) developed a statistical learning algorithm for tumor segmen-
tation using Hidden Markov Models (HMMs) to auto-segment the 
angiogenesis corresponding to a tumor in breast DCE-MRI. [12] 
(Wang et al., 2013) proposed a hierarchical SVM-based segmen-
tation method for breast DCE-MRI. 3D multi-parametric features 
from T1-weighted (T1-w), T2-weighted (T2-w), PD-w, and three-
point Dixon water-only and fat-only MRIs were used as inputs to 
the SVM to classify the breast tissues into fatty, fibroglandular, 
lesion, and skin. [13] (Milenkovi´c et al., 2013) applied logistic 
regression, the least-square minimum-distance classifier (LSMD), 
and least-squares support vector machine (LS-SVM) classifiers on 
breast DCE-MRI for classification of malignant and benign breast 
lesions in the breast. [14] (McClymont et al., 2014) used mean-
shift and graph-cuts algorithm for breast lesion segmentation in 
DCE-MRI. (Wang et al., 2014) used modifying FCM for clustering 
for breast tumor segmentation in DCE-MRI and further lesions are 
characterized using a pharmacokinetic model. A computer-aided 
detection auto probing (CADAP) system was developed by [15] 
(Sim et al., 2014) for lesion detection in breast DCE-MRI utilizing 
a spatial-based discrete Fourier transform and further character-
ized in benign, suspicious, or malignant.

As per the best knowledge of the authors, the hard or partitional 
clustering technique with metaheuristic algorithms is not used in 
the segmentation of breast DCE-MRI. This motivates to develop-
ment a hard-clustering technique with Grammatical Fireworks al-
gorithm(GFWA) [17] (Si, 2015a) to segment the breast MR images 
for lesion detection in this paper. GFWA is Swarm Programming 

(SP) method developed for automatic computer program genera-
tion in any arbitrary language. Here, GFWA is used to generate the 
cluster center for clustering the breast MR images.

3. Contribution of this Article

Now, contributions of this article may be summarized as follows:

1.	 A GFWA-based segmentation methodology for breast 
lesion detection in DCE-MRI is proposed. A hard-clus-
tering technique with GFWA is proposed to segment the 
breast DCE-MRI.

2.	 GFWA is not used previously in the segmentation of 
breast DCE-MRI as well as in any kind of image segmen-
tation. Hence, the application of GFWA in breast lesion 
detection is another novelty of this article.

3.	 Finally, a comparative study of the proposed method is 
made with Grammatical Swarm based clustering tech-
nique [16, 18] (Si et al., 2014, 2015b) and K-means algo-
rithm [19] (MacQueen, 1967).
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