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1.Abstract

A new coronavirus disease, called COVID-19, appeared in the Chinese region of Wuhan at the end 
of last year; since then the virus spread to other countries, including most of Europe. We propose 
a differential equation governing the evolution of the COVID-19. This dynamic equation also de-
scribes the evolution of the number of infected people for 13 common respiratory viruses (including 
the SARS-CoV-2). We validate our theoretical predictions with experimental data for Italy, Belgium 
and Luxembourg, and compare them with the predictions of the logistic model. We find that our 
predictions are in good agreement with the real world since the beginning of the appearance of the 
COVID-19; this is not the case for the logistic model that only applies to the first days. The second part 
of the work is devoted to modelling the descending phase, i.e. the decrease of the number of people 
tested positive for COVID-19. Also in this case, we propose a new set of dynamic differential equations 
that we solved numerically. We use our differential equations parametrised with experimental data 
to make several predictions, such as the date when Italy, Belgium, and Luxembourg will reach a peak 
number of SARS-CoV- 2 infected people. The descending curves provide valuable information such 
as the duration of the COVID-19 epidemic in a given Country and therefore when it will be possible 
to return to normal life.

We find ourselves in a global pandemic, referred to as COVID-19. There is much research underway 
on all aspects of the pandemic, including to slow its spread, improve diagnostic tests, develop a vac-
cine, and mathematical models able to foresee the dynamic of this pandemic. In this paper, we develop 
a mathematical model for the spread of the coronavirus disease 2019. By means of a very simple math-
ematical model, we study the particular case of Italy, Belgium, and Luxembourg and we provide the 
dynamic of the descending phase, i.e. the evolution of the decrease number of people tested positive to 
the COVID-19. The predictions about the descending phase provide valuable information about the 
duration of the COVID-19 in a given Country, especially when it will be possible to return to normal 
life. The theoretical predictions are in excellent agreement with the experimental data.

3. Introduction

Viral infections usually affect the upper or lower respiratory tract. 
Although respiratory infections can be classified according to the 
causative agent (e.g. the flu), they are mostly clinically classified ac-
cording to the type of syndrome (e.g., common cold, bronchiolitis, 
laryngo-tracheo-bronchitis acute, pneumonia). Although patho-
gens typically cause characteristic clinical manifestations (e.g., rhi-
novirus causes the common cold, respiratory syncytial virus [RSV] 
usually causes bronchiolitis), they can all cause many of the most 
common respiratory syndromes. The severity of viral respiratory 
disease is highly variable; serious illness is more frequent in elderly 

patients and young children. Morbidity can either directly result 
from the infecting agent, or may be indirect. The latter case can be 
due to the exacerbation of an underlying cardiopulmonary disease, 
or a bacterial superinfection of the lung, paranasal sinuses, or mid-
dle ear. The main motivation of this work is to verify, by making 
theoretical predictions, that political decisions are truly effective to 
minimise the number of infected people in order to (i) not over-
load local health services (such as hospitals), and to (ii) gain time 
to allow research institutes to deliver vaccines or the anti-virals.

(Table 1 and Table 3) respectively provide the experimental data 
for Italy [1] and for Belgium [2, 3]. They show the number of active 
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people (i.e., people currently infected by SARS-CoV-2), the recov-
ered people, and deaths for COVID-19.

We start our theoretical analysis by introducing the definition of 
the basic re- production number of an infection R0, defined as the 
number of infected people derived from a first case in a population 
where all the others are susceptible. So, it is not possible to modify 
R0, in any case, but it is possible to get a different effective R1. This 
parameter is strictly linked to the replication time of a virus, indi-
cated with µi, defined as the time interval after which the number 
of infected people has increased by R0 times. (Figure 1) schemati-
cally represents the diffusion dynamics of the virus. By indicating 
with N the number of infected people, after n steps we get2:

                                                                                      (1)

Figure 1: Schematic dynamics of respiratory virus in the absence of the lockdown 
measures in this graphics, for illustrative purpose only, we set R0 = 3. However, for 
SARS-CoV-2, the value of R is 2 even at the beginning of the outbreak in China and 
Italy.  After a period of time µ1, an infected individual can infect R0 other individ-
uals. In turn, after a period µ2, each of these newly infected individuals can infect 
other R0 people, and so on. After n steps the elapsed time is µi. 

Table 1: Situation in Italy on 15 May 2020. Columns report the number 
of active people (currently infected by SARS-CoV-2), the number of 
recovered people, and the number of deceased people.

Date Active Recovered Deceased Total cases
25-Feb 322 1 10 333
26-Feb 400 3 12 415
27-Feb 650 45 18 713
28-Feb 888 46 21 955
29-Feb 1049 50 29 1128
1-Mar 1577 83 34 1694
2-Mar 1835 149 52 2036
3-Mar 2263 160 79 2502
4-Mar 2706 276 107 3089
5-Mar 3296 414 148 3858
6-Mar 3916 523 197 4636
7-Mar 5061 589 233 5883
8-Mar 7375 622 366 8363
9-Mar 9172 724 463 10359
10-Mar 10149 1004 631 11784
11-Mar 10590 1045 827 12462
12-Mar 12839 1258 1016 15113
13-Mar 14955 1439 1266 17660
14-Mar 17750 1966 1441 21157
15-Mar 20603 2335 1809 24747
16-Mar 23073 2749 2158 27980
17-Mar 26062 2941 2503 31506
18-Mar 28710 4025 2978 35713
19-Mar 33190 4440 3405 41035
20-Mar 37860 5129 4032 47021
21-Mar 42681 6072 4825 53578
22-Mar 46638 7024 5475 59137
23-Mar 50418 7432 6077 63927
24-Mar 54030 8326 6820 69176
25-Mar 57511 9362 7503 74376

26-Mar 62013 10361 8165 80539
27-Mar 66414 10950 9134 86498
28-Mar 70065 12384 10023 92472
29-Mar 73880 13030 10779 97689
30-Mar 75528 14620 11591 101739
31-Mar 77635 15729 12428 105792
1-Apr 80572 16847 13155 110574
2-Apr 83049 18278 13915 115242
3-Apr 85388 19758 14681 119827
4-Apr 88274 20996 15362 124632
5-Apr 91246 21815 15887 128948
6-Apr 93187 22837 16523 132547
7-Apr 94067 24392 17127 135586
8-Apr 95362 26491 17669 139422
9-Apr 96877 28470 18279 143626
10-Apr 98273 30455 18849 147577
11-Apr 102253 34211 19899 152271
12-Apr 100269 32534 19468 156363
13-Apr 103616 35435 20465 159516
14-Apr 104291 37130 21067 162488
15-Apr 105418 38092 21645 165155

Table 2: Situation in Italy on 15 May 2020. Columns report the number of active 
people (currently infected by SARS-CoV-2), the number of recovered people, and 
the number of deceased people.

Date Active Recovered Deceased Total cases
16-Apr 106607 40164 22170 168941
17-Apr 106962 42727 22745 172434
18-Apr 107771 44927 23227 175925
19-Apr 108257 47055 23660 178972
20-Apr 108237 48877 24114 181228
21-Apr 107709 51600 24648 183957
22-Apr 107699 54543 25085 187327
23-Apr 106848 57576 25549 189973
24-Apr 106527 60498 25969 192994
25-Apr 105847 63120 26348 195351
26-Apr 106103 64928 26644 197675
27-Apr 105813 66624 26977 199414
28-Apr 105205 68941 27359 201505
29-Apr 104657 71252 27682 203591
30-Apr 101551 75945 27967 205463
1-May 100946 78249 28236 207428
2-May 100704 79914 28710 209328
3-May 100179 81654 28884 210717
4-May 99980 82879 29079 211938
5-May 98467 85231 29315 213013
6-May 91528 93245 29684 214457
7-May 89624 96276 29958 215858
8-May 87961 99023 30201 217185
9-May 84842 103031 30395 218268
10-May 83324 105186 30560 219070
11-May 82488 106587 30739 219814
12-May 81266 109039 30911 221216
13-May 78457 112541 31106 222104
14-May 76440 115288 31368 223096
15-May 72070 120205 31610 223885
16-May 70187 122810 31763 224760
17-May 68351 125176 31908 225435
18-May 66553 127326 32007 225886
19-May 65129 129401 32169 226699
20-May 62752 132282 32330 227364
21-May 60960 134560 32486 228006
22-May 59322 136720 32616 229858
23-May 57752 138840 32735 229327
24-May 56594 140479 32785 229858
25-May 55300 141981 32877 230158
26-May 52942 144981 32955 230555
27-May 50966 147101 33072 231139
28-May 47986 150604 33142 231732
Date Active Recovered Deceased Total cases
16-Apr 106607 40164 22170 168941
17-Apr 106962 42727 22745 172434
18-Apr 107771 44927 23227 175925
19-Apr 108257 47055 23660 178972
20-Apr 108237 48877 24114 181228
21-Apr 107709 51600 24648 183957
22-Apr 107699 54543 25085 187327
23-Apr 106848 57576 25549 189973
24-Apr 106527 60498 25969 192994
25-Apr 105847 63120 26348 195351
26-Apr 106103 64928 26644 197675
27-Apr 105813 66624 26977 199414
28-Apr 105205 68941 27359 201505
29-Apr 104657 71252 27682 203591
30-Apr 101551 75945 27967 205463
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1-May 100946 78249 28236 207428
2-May 100704 79914 28710 209328
3-May 100179 81654 28884 210717
4-May 99980 82879 29079 211938
5-May 98467 85231 29315 213013
6-May 91528 93245 29684 214457
7-May 89624 96276 29958 215858
8-May 87961 99023 30201 217185
9-May 84842 103031 30395 218268
10-May 83324 105186 30560 219070
11-May 82488 106587 30739 219814
12-May 81266 109039 30911 221216
13-May 78457 112541 31106 222104
14-May 76440 115288 31368 223096
15-May 72070 120205 31610 223885
16-May 70187 122810 31763 224760
17-May 68351 125176 31908 225435
18-May 66553 127326 32007 225886
19-May 65129 129401 32169 226699
20-May 62752 132282 32330 227364
21-May 60960 134560 32486 228006
22-May 59322 136720 32616 229858
23-May 57752 138840 32735 229327
24-May 56594 140479 32785 229858
25-May 55300 141981 32877 230158
26-May 52942 144981 32955 230555
27-May 50966 147101 33072 231139
28-May 47986 150604 33142 231732

1More rigourously, in epidemiology, the basic reproduction num-
ber of an infection, R0, is the expected number of cases directly 
generated by one case in a population where all individuals are sus-
ceptible to infection in absence of any deliberate intervention in 
disease transmission (see, for example, [4]).
2In this Section we shall follow the definitions and the expressions 
reported in standard

Of course, after n steps, the elapsed time is  and, if 
there are M outbreaks of infectious viruses, Eq. (1) can be cast into 
the form3

                                                         (2)

with  Note that the two parameters R0 and µ are 
not independent (see, for example, [7-9])4. It is more convenient to 
work in the Euler base e rather than in base R0; in the Euler base 
Eq. (2) provides the law of growth of a Malthusian population [5].

  where              (3)

In literature, τ is referred to as the characteristic time of the ex-
ponential trend. So, in the absence of containment measures the 
number of infected people follows the exponential law (3). Let us 
now analyse Eq. (3) in more dept. We have three possible scenarios:

1. R0 > 1 (as is the current world’s situation). For Italy, for 
example, before the adoption of (severe) containment 
measures, the value of τ was about 3.8 days (and µ 
2.6 days). In this case the number of the infected people 
increases exponentially.

2. R0 = 1 If the infection-capacity of the virus is of the type 

one-to-one (i.e., a person infected by SARS-CoV-2 can in 
turn infects only another person), we get the stationary 
situation corresponding to N = 1. This situation is re-
ferred to as the latent situation i.e., the virus is still present 
but does not spread. In this limit case, the SARS-CoV-2 
is substantially ineffective. Scenarios (1) and (2) are illus-
trated in (Figure 2).

Figure 2: Situation before the lockdown measures. Number of infected people cor-
responding to the exponential law. The red line represents the case R0 > 1, such as 
the situation before the adoption of lockdown measures. The black line corresponds 
to the case R0 = 1, the latent situation in which the virus is substantially ineffective.

3. 0 < R0 < 1. We may also imagine that the capacity of in-
fection of SARS-CoV-2 is less than 1. This means that 
the virus is no longer able to be spread (e.g., thanks to 
protective measures, or to the production of vaccines and 
anti-virals, or because people who overcame the disease 
became immune. In this case, the value of τ is negative 
and the number of infected people decreases ever time. 
That is, the infection eventually disappears. The rate of 
decrease of the number of infected people depends on the 
value of τ. This scenario is depicted in (Figure 3).

books or thesis dissertation such as, for example, [5, 6].

Figure 3: Number of infected people corresponding to the exponential law. The 
red line represents the case R0 < 1. In this situation the number of infected peo-
ple decreases exponentially and the virus disappears after a few weeks.
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3Actually, Eq. (2) applies only if the M outbreaks of the virus are 
exactly at the same conditions. In general, the correct expression

reads  with  indicating the replication time of the vi-
rus for the i-th outbreak.
4In ref. [7], the doubling time is used to calculate R0, by means of 
the equation R0 = 1 + (γ + ρ) log (2)/µ where γ is the duration of 
the incubation period, ρ is the duration of the symptomatic period, 
and µ is the doubling time (see [7]). In this respect, we would also 
like to mention another excellent work recently produced by G. 
Steinbrecher [9] (Figure 2 and 3).

4. Comparison with the Real Data for COVID-19 before 
the Lockdown Measures

It is understood that the main objective of the lockdown measures 
established by most European governments and health organisa-
tions is to reduce the ability of a virus to spread. From a mathemat-
ical point of view, we would like to have R0 = 1 (or, better, R0 < 1), 
in Eq. (3) instead of R0 > 1. In practical terms, this means reducing 
the frequency of all involuntary contacts with a large number of 
people, reducing unnecessary movements to avoid encounters, and 
to prolong the closure of schools. Although these measures can-
not prevent the spread of the infection in the long term, they can 
reduce the number of new infections daily. This has the benefit of 
leaving room for seriously-ill patients by avoiding to overload the 
healthcare system. We can easily realise what are the consequences 
if the lockdown measures are not set up. To make a comparison be-
tween the theoretical predictions and the experimental data in ab-
sence of lockdown measures, we have to consider the correct refer-
ence period. More specifically, we saw that the number of positive 
cases grows in the course of time by following the law (3). Hence, at 
the reference time t0, the number of people infected by the virus is

                                                        (4)

After a period of time, say t, Eq. (3) reads

                                                        (5)

Hence,

                                                       (6)

Eq. (6) is the equation that we use for comparing the mathematical 
predictions with experimental data during the initial phase where 
the spread of SARS- CoV-2, causing the COVID-19, follows the 
exponential law, and (t-t0) is our reference period. For the case of 
COVID-19 we get (see, for example, [5, 6])

• All infectious outbreaks are exactly at the same condi-
tions. So, Eq. (2) applies;

• R0 = 2;

• All the µi are equal with each other: µi = const = µ (see 
also [5, 7]).

In this case, µ is referred to as the doubling time. So, the doubling 

time is the amount of time it takes for a given quantity to double 
in size or value at a constant growth rate [8]. If we do not apply 
the locking measures, the evolution in the course of time of the 
number of infected people is best approximated by an exponential 
curve with R = 2, even though we have to stress that R0 is only 
associated with the beginning of the epidemic and, with certain 
approximations, with the early stages, but not beyond. (Figure 4 
and Figure 5) respectively show the comparison between the the-
oretical predictions and the experimental data for Italy and Bel-
gium before the lockdown measures. We get τ  3.8 days and µ  
2.6 days for Italy, and τ  5.2 days and µ  3.7 days for Belgium. 
We conclude this Introduction by mentioning that there are sev-
eral methods currently proposed in Literature to derive by math-
ematical models, the value of R0. For example, in ref. [9], we have 
a short numerical code, written in R-programming language for 
statistical computing and graphics, able to compute the estimat-
ed R0 values for the following 17 infectious diseases: Chickenpox 
(varicella) (Transmission: Aerosol), Common cold (Transmission: 
Respiratory Droplets), COVID-19 (Transmission: Respiratory 
Droplets), Diphtheria (Transmission: Saliva), Ebola - 2014 Ebola 
outbreak (Transmission:: Body fluids, HIV/AIDS (Transmission: 
Body fluids), Influenza - 1918 pandemic strain (Transmission:: 
Respiratory Droplets), Influenza - 2009 pandemic strain (Trans-
mission: Respiratory Droplets, Influenza - seasonal strains (Trans-
mission: Respiratory Droplets), Measles (Transmission: Aerosol), 
MERS (Transmission: Respiratory Droplets), Mumps (Transmis-
sion: Respiratory Droplets), Pertussis (Transmission: Respiratory 
Droplets), Polio (Transmission: Fecal oral route), Rubella (Trans-
mission: Respiratory Droplets), SARS (Transmission: Respiratory 
Droplets), Smallpox (Transmission: Respiratory Droplets). How-
ever, this task is particularly problematic if there are intermediate 
vectors between hosts, such as malaria.

This manuscript is organised as follows. Section (2) determines 
the dynamic differential equation for the COVID-19; Section (2.3) 
compares the theoretical predictions and experimental data for 
Italy and Belgium. The differential equations providing the evo-
lution of the decrease of the number of people tested positive for 
COVID-19 can be found in Section (3); Section (4) concludes. The 
comparison between the theoretical predictions of our model and 
experimental data for Luxembourg, as well as the solution of the 
differential equations in the descending phase for Luxembourg 
are reported in Appendix. We may object that we are dealing data 
from countries which have passed the peak of infection, such as 
South Korea, Iceland or Austria etc. The situation in other Coun-
tries, which may have adopted other political decisions about the 
application of the lockdown measures, may be subject of future 
works. However, we would like to mention that several authors are 
currently applying our model to other Countries. In this regard, we 
have received their pre-prints such as the work cited in Ref. [11]. 
More specifically, we have received a message where our model has 
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been used, with success, to analyse data from UK, USA, NY City, 
Spain, and Mumbai City. We stress the fact that this manuscript 
deals with the spread of SARS-CoV-2 until May 16, 2020, as the 
objective of this work is to study the effect of the strict lockdown 
measures. After May 2020, these measures have been modified by 
the various Governments, which have decided to introduce less 
heavy and much less restrictive lockdown measures5.
5The study of the dynamics of COVID-19 when the population is 
subjected to less

Figure 4: Number of infected people in Italy on the 10th of March 2020 (before 
the adoption of lockdown measures). The blue line corresponds to the theoretical 
predictions and the black dots correspond to experimental   data.  The  values of the  
parameters  and    are  3.8 days and  2.6 days, respectively.

Figure 5: Exponential phase in Belgium. The lockdown measure have been 
adopted on the 16the of March 2020 (however, initially not so strict as in Italy). The 
red line corresponds to the theoretical predictions and the black dots correspond to 
experimental data. The values of the parameters  and  are   c 5.3 days 
and  3.7 days, respectively.

5. Modelling the COVID-19 - Virus’ growth

The objective of this section is to determine the coefficients of 
the evolutionary differential equation for the COVID-19 (see the 
forthcoming Eq. (13)). We also determine the generic analytical 
expression for the time-dependent number of infected people 
through fitting techniques validated by the χ2 tests. This expression 
is proposed after having previously analysed 12 respiratory infec-
tious diseases caused by viruses [10], in addition of being solution 

to the Richard’s differential equation.

5.1 General Background

Letting N represent population size and t represent time, the 
Logistic model model is formalised by the differential equation 
below:

                                                        (7)

where α > 0 defines the grow rate and K > 0 is the carrying capacity. 
In this equation, the early, unimpeded growth rate is modelled by 
the first term +αN. The value of the rate α represents the propor-
tional increase of the population N in one unit of time. Later, if 
the system is closed (i.e. the system is isolated and, hence, not in 
contact with a reservoir allowing the system to exchange individu-
als), as the population grows the modulus of the second term, αN 
2/K, becomes almost as large as the first, until to saturating the ex-
ponential growth. This antagonistic effect is called the bottleneck, 
and is modelled by the value of the parameter K. The competition 
diminishes the combined growth rate, until the value of N ceases 
to grow (this is called maturity of the population). The solution of 
Eq. (7) is

                                                        (8)

where B > 0 is a constant related to the value of N (0). It is more 
convenient to rewrite Eq. (8) in terms of the initial Logistic time 
t0L defined as

                                                        (9)

So, Eq. (8) may be cast into the form

                                                      (10)

where τ is linked to the steepness of the curve. Since the environ-
mental condi- tions influence the carrying capacity, as a conse-
quence it can be time-varying, with K(t) > 0, leading to the follow-
ing mathematical model (see, for example, [12]):

                                                      (11)

restrictive measures is beyond the scope of this work and it will be 
subject of future studies.

More generally, the growth modelling is well described by Rich-
ards’ differential equation (RDE) [13]

                                                      (12)

where ν > 0 affects near which asymptote maximum growth oc-
curs. The phenomenological logistic function is used to model the 
evolution of the COVID-19 pandemic in different Countries. The 
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logistic model is mainly used in epidemiology and provides in-
sights into the transmission dynamics of the virus. We note, how-
ever, to evaluate the dynamics of transmission of SARS-CoV-2, 
more refined models are needed, which take into account specific 
measures adopted in each Country [14]. So, let us suppose that the 
Government decides to adopt the lockdown measures. After the 
application of the lockdown measures the equation may be revised 
to be

                                      (13)

where c(t) takes into account the degree of effectiveness of the 
lockdown measures.

5.2. Determination of the Carrying Capacity and the Lockdown 
Coefficient for the COVID-19

According to ref. [15]6 Respiratory viruses remain quiet for months, 
inactive but viable, within living cells. Then suddenly they activate 
and become virulent as they say, the infectious capacity grows to 
a maximum, after which it decreases. The time duration is about 
of 2 or 3 months. So we can expect that the epidemic will soon 
die out in Italy too. So, there is no valid reason to think that this 
coronavirus behaves differently from others [15]. The present work 
starts from the following hypothesis: the SARS-CoV-2 behaves like 
the other viruses that cause respiratory diseases. As a consequence, 
for the COVID-19 case, functions K(t) and c(t) are determined by 
performing several fittings on the growth rate-trends of infection 
capacity of the viruses that mainly affect the respiratory system. 
More specifically, we considered the following 13 different diseas-
es caused by 12 different viruses: Whooping Cough (Pertussis), 
Swine Flu (H1N1), Bird Flu (Avian Flu H5N1), Enterovirus, Flu 
in Children, Flu in Adults, Bacterial Pneumonia, Viral Pneumo-
nia, Bronchitis, Common Cold (Head Cold), Severe acute respi-
ratory syndrome (SARS), and MERS (Middle East Respiratory 
Syndrome). In all the examined cases, we took into account the 
fact that the therapy-induced death rate is greater than the baseline 
proliferation rate, then there is the eradication of the disease. In 
other words, for the above-mentioned cases the function
6Prof. Roberto Ronchetti is currently working at the Pediatric Clin-
ic of La Sapienza of the University of Rome, at the Policlinico Um-
berto I and at the S. Andrea 24 March Hospital where he helped 
to found, dealt with childhood respiratory diseases, and studied 
bronchiolitis in particular. In these days he has studied (with his 
collaborators) the data available on SARS-CoV-2 in China, in 
South Korea and now in Italy.

c(t) in Eq. (13) represents the therapy-induced death rate [16, 24]. 
Of course, this is an oversimplified model of both the growth and 
the therapy (e.g., it does not take into account the phenomenon of 
clonal resistance). We empirically noticed (according to the χ2 test) 
that all these viruses have in common the same growth rate-trend 
of infected people (of course, each of these behaviors have their 

own growth rate parameters). In particular, we get that the trends 
of the total number of infected people by respiratory viruses (in-
dicated with N), subject to the therapy-induced death rate, versus 
time satisfy the following

O.D.E. [10]

 with   (14)

where we have introduced the dimensionless time ^t ≡ t/t0. The 
coefficient

 (with                                      (15)

is referred to as the average therapy-induced death rate. In our case 
the term c(t)N in the dynamic equation represents the lockdown 
measures. The lock- down is mainly based on the isolation of the 
susceptible individuals, eventually with the removal of infected 
people by hospitalisation7. In the idealised case,

for  > 1, c(t) may be modelled as a linear function of , by 
getting

                                                        (16)

As for the epidemiological explanations relating to the various 
modelling of c(t) (constant, linear in time etc.), we refer the reader 
to the well-known and extensive literature on the subject (see, for 
example, Ref [25] or to the references cited in [26]). Here, we limit 
ourselves to give a very intuitive explanation on the physical mean-
ing of this contribution. Immediately after the lockdown measures 
have been adopted, i.e. during the very first initial phase, we expect 
that c( ,) is practically constant in time, as these measures have not 
yet been able to act effectively. However, after a short period of time, 
the positive effects of the lockdown measures become increasingly 
efficient and it is intuitive to expect a linear growth of c(t) in time. 
More specifically, we expect that, after a short transition period the 
coefficient c(t) starts to grow linearly in time. Successively, at the 
leading order, c( ,) will be equal in magnitude to the coefficient of 
the linear term (in order to balance the growth rate induced by the 
linear term). This because the lockdown measures will be able to 
satuarte the exponential growth. Briefly, we expect that the O.D.E. 
governing the dynamics of the SARS-CoV-2 is of the form (14) 
where c( ) α , for , > 1/α1/2. Indeed, for values of
7It is worth mentioning that initially England did not adopted any 
lockdown measures believing that the British system be a closed 
system. Basically, it was believed that the system be governed by 
a simply logistic equation with a carrying capacity constant or 
decreasing in time (according to the above-mentioned point A)). 
However, contrary to the expectations, in England the carrying ca-
pacity increased in time. This induced the British government to 
adopt the lockdown measures.

time  1, the lockdown term in Eq. (14) is able to balance the 
exponential grow, which is in agreement with our intuitive expec-
tations.
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Parameters KN and α depend on the virus in question and on the 
external conditions (e.g. in our case, the lockdown measures) to 
which the population is subject. In Eq. (14), the term −N2/KN is 
the term that tends to saturate the exponential growth. KN is con-
stant (or decreases) in the course of time since the non-linear con-
tribution becomes more and more important until saturating

the exponential growth. In our model, the carrying capacity is kept 
constant. For large values of the carrying capacity, the solutions of 
Eq. (14) reach the plateau at the time tMax given by the expression

 

                                                        (17)

Notice that α is linked to µ. Indeed, as shown in Section 1, during 
the exponential period the COVID-19 grows according to the law 
(see Eq. (6)):

  where                                                    (18)

Hence, we get

 where                                         (19)

We conclude this Section by mentioning that we may easily check 
(numerically) that, for systems having a large carrying capacity, the 
solution of Eq. (14) is well fitted by the expression

 with                  (20)

The values of parameters A, t0 and σ depend on the virus in ques-
tion. It is convenient to re-write Eq. (20) in dimensionless form 

 with           (21)

To sum up, according to our model for COVID-19, the ascending 
behaviour of the total cases (i.e., the number of of positive cases 
plus the cumulative number of recovered people plus the cumula-
tive number of deaths) is given by the solution of Eq. (14) for 0 ≤ 
t ≤ tMax.

Notice that the determination of the O.D.E. (14) is of a fundamen-
tal importance if we wish also to describe the stochastic process 
(and the associated Fokker- Planck equation) where a white noise 
is added to this O.D.E. According to the literature nomenclature, 
we refer to the differential equation (14) as COVID-19 dynamic 
model8.
8Viral dynamics is a field of applied mathematics concerned with 
describing the progression of viral infections within a host organ-
ism (see, for example, [27].)

5.3. Comparison between the Theoretical Predictions and Ex-
perimental Data

For Italy and Belgium one observes two distinct phases related to 

the dynamics of the COVID-19, which we classify as before the 
adoption of the lockdown measures and after some days after the 
adoption of the lockdown measures. The question therefore natu-
rally arises, of whether these two types of regime are separated by 
a well-defined transition. We shall see that this is indeed the case. 
We may identify three different periods, which may be classified 
as follows:

1. The exponential period. As seen in Section 1, 
before the adoption of lock- down measures, the 
exponential trend is the intrinsic behaviour of 
the grow rate of the COVID-19. In this period 
the doubling time µ is a constant parameter ver-
sus time.

2. The transient period. The transient period starts 
after having applied the severe lockdown mea-
sures. In this period, we observe a sort of oscil-
lations (or fluctuations) of µ versus time. In this 
case the time variation of µ(t) reflects the be-
haviour of the time effective reproduction num-
ber, R(t), de- fined as the number of cases gener-
ated in the current state of a population, which 
does not have to be the uninfected state. Fig. 6 
and Fig. 7 show the behaviour of the parameter 
µ versus time for Italy and Belgium, respectively. 
The transient period ends when the last step of 
the exponential trend fits real data as good as the 
linear trend9.

3. The bell-shaped period (or the post-transient 
period). In the bell-shaped period parameter µ 
is a (typical) function of time obtained by using 
Eq. (14). Several theoretical models can be used 
to study the post-transient period (e.g., by using 
Gompertz’s law [28]). Here, we use two math-
ematical models: the solution of the differential 
equation (14) and the logistic model (see, for 
example, Ref. [16]), and we compare these two 
theoretical models with real data for Italy and 
Belgium.

(Figures 8, 9, 16) (see Appendix) compare the predictions of our 
model (blue lines) against the logistic model (red lines) for Italy, 
Belgium, and Lux- embourg, respectively. Notice that the number 
of free parameters of these two models are exactly the same, since 
K, τ , α, and λ cannot be chosen arbitrarily. More specifically,

a) The logistic model possesses two free parameters: K and 
t0L. Notice that parameter τ is not free since it is linked to 
the doubling time µ;

b) Also our model possesses two free parameters: KN and t0. 
Notice that parameter α is linked to the doubling time µ 
(see Eqs (14) and (18)).

http://http://acmcasereports.com/


http://acmcasereports.com/                                                                                                                                                                                                                                                              8

Volume 4 Issue 9 -2020                                                                                                                                                                                                                                   Research Article

(Figure 8, 9) compare the theoretical predictions, with the experi-
mental data for Italy and Belgium updated to the 15th of May 2020. 
The values of the parameters τ , χ, and t0 for Eq. (14) and the pa-
rameters τ , t0 and K for the logistic function are reported in the 
figure captions. As we can see, for both Countries Eq. (14) fits well 
all the real data from the initial days, while the logistic model ap-
plies only to the first data. The curves reach the plateau at the time 
tMax given by Eq. (17). By inserting the values of the parameters, 
we get

 days and  days           (22)

corresponding to  April 2020 and  May 
2020 for Italy and Belgium, respectively.

Figure 6: Italian transient period (from the 10th of March 2020 to the 24th of March 
2020). During this period, the doubling time µ oscillates over time. µ0 indicates 
the (constant) doubling time during the exponential period (for Italy µ0  2.6 
days).

Figure 7: Belgian transient period (from the 17th of March 2020 to the 29th of 
March 2020). During this period, the doubling time µ oscillates over time.  µ0  
indicates the (constant) doubling time during the exponential period (for Belgium 

 3.7 days).

6. Modelling the COVID-19 - The Descending Phase

Here, for the descending phase is intended the phase where the 
number of the positive cases starts to decrease10. So, our model 
cannot be used for describing also the descending phase since Nt is 
the number of the total cases and, during the descending phase, Nt 
tends to reach the plateau. The objective of this section
9A numerical condition may be established by using the χ2 test: 
the fittings of the two trends are considered both good if, for ex-

ample, for both trends, the χ2-tests get values 0.9. 10We define the 
number of positive people as the number of people tested positive 
for COVID- 19, henc11e, by excluding the number of the deceased 
people and the number of people who recovered.

is to determine the trend of the curve of positive people during 
the descending phase. This task is accomplished by establishing the 
appropriate equations for the recovered people and the deceased 
people for COVID-19. During the descent phase the number of ac-
tive people over time must satisfy a conservation equation. This al-
lows determining the time-evolution for the positive people. In the 
sequel, we denote with rt, dt, and nt the number of people released 
from the hospital at the time t, the total deaths, and the number of 
positive individuals at time t, respectively

Figure 8: Situation in Italy on 15 May 2020-before, and 65 days after, the adoption 
of lockdown measures. The black dots correspond to experimental data. The red 
dotted line corresponds to the situation in Italy before the adoption of the lockdown 
measures. The blue and the red solid lines correspond to the theoretical predictions 
for Italy according to the solution of Eq.  (14)  and the logistic model, respectively.  
Solution of Eq. (14) fits well all the experimental data from the initial days (i.e., from 
the 1st of February 2020), while the logistic model applies only to the first days. 
The values of the parameters of Eq. (14) and the logistic function (10) are:   
3.8 days (  = 2.6 days), 355250, and 72.5 days for Eq. (14), and 

3.8 days (   = 2.6 days),  = 225000,  = 53 days for the Logistic 
function.

Figure 9: Situation in Belgium on 15 May 2020-before, and 60 days after, the 
adoption of lockdown measures. The black dots correspond to real data. The blue 
dotted line corresponds to the situation in Belgium before the adoption of the 
lockdown measures. The blue and the red solid lines correspond to the theoretical 
predictions for Belgium according to the solution of Eq. (14) and the logistic model, 
respectively. Solution of Eq. (14) fits well all the experimental data from the initial 
days (i.e., from the 29th of February 2020), while the logistic model applies only to 
the first data. The values of the parameters of Eq. (14) and the logistic function (10) 
are:   5.3 days (  = 3.7 days), 42626, and 53.4 days for 
Eq. (14), and 5.3 days (  = 3.7 days),  = 111000,  = 39.5 
days for the Logistic function, respectively. The zone I corresponds to the period 
before the adoption of the lockdown measures.
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Figure 10: Italy situation. Theoretical predictions (blue line) against the experimen-
tal data (black circles) for the recovered people.

Figure 11: Italy situation. Theoretical predictions (blue line) against the experimen-
tal data (black circles) for the deceased people.

11We draw the attention of the reader that in this manuscript Nt 
(capital letter) represents the number of the total cases at time t, 
whereas nt (small letter) refers to the number of the positive indi-
viduals at time t.

6.1 Number of the Recovered People

We start with the recovered people previously hospitalised. Let us 
suppose that a hospital has 50 patients in intensive therapy, cor-
responding to its maximum availability capacity. If the hospital is 
unable to heal any patient, the growth rate of healed people is nec-
essarily equal to zero. On the other hand, if the hospital is able to 
heal a certain number of people, the places previously occupied by 
the sick people will free and other patients affected by COVID-19 
will be able to be hospitalised. In the latter case, the growth rate of 
the healed people will rise thanks to the fact that the hospital is able 
to heal more and more patients. This initial phase may be modelled 
by introducing into the dynamic equation the term +γr(t), with 
r(t) indicating the number of the recovered people at the time t, 
previously hospitalised

                 (23)

However, it is reasonable to suppose that ζ is constant for low val-
ues of r, whereas, when h takes more and more large values, ζ is 
proportional to Ih, with Ih denoting the number of the infected 
people entering in the hospital (and not the total number of the 
infected people, which is indicated with I). Hence,

              (24)

The sign minus in Eq. (24) is due to the fact that the recovered peo-
ple will continue to grow linearly until when it reaches a maximum 
limit i.e. until when the hospital is no longer able to accept oth-
er sick people; this causes a reduction of people who recover. The 
competition between these two effects diminishes the combined 
growth rate. Hence,

                 (25)

where βh is linked to the hospital’s capacity to accept sick people. 
To sum up,

 where 

 )                                       (26)

h(t) is the number of the recovered people, previously hospitalised, 
at the time t who have been infected, in average, at the time  
and  denotes the number of deceased people at the 
hospital at the time  who have been infected, in average, at 
the time t τ (in general, τ1  0).

Clearly, the number of the recovered people, previously hospital-
ised, at the step n (i.e. rn), is linked to the total number of the re-
covered people previously hospitalised at the step n (denoted by 
hn) by the relation

 or  (with  day)       (27)             

where we have set h0 = 0

6.1.1. Approximated O.D.E. for the Recovered People Previous-
ly Hospitalised

We assume that all the infected people entering in the hospitals 
will heal. So

 hence               (28)

The final O.D.E. for the recovered people reads then

               (29)

where Kr is the hospital’s capacity, which we assume to be a time-in-
dependent parameter. It should be kept in mind that, under this 
approximation, the equation for the number of recovered people 
is in itself and independent of the equations for the other variables 
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(i.e. for It and Dt)12.

6.1.2. O.D.E. for the Total Recovered People

At the first approximation, the O.D.E. for the total recovered peo-
ple Rt (i.e. the total individuals having survived the disease) is triv-
ially obtained by considering that the rate of Rt is approximatively 
proportional to the number of the infected people It at time t i.e.13.

                (30)

However, it is useful to clarify the following. In Eqs (27), ht stands 
for the total number of the recovered people previously hospital-
ised whereas the variable Rt in Eq. (30) is the total number of the 
recovered people (i.e. the number of the recovered people previ-
ously hospitalised, plus the number of the asymp- tomatic peo-
ple, plus the infected people who have been recovered without 
being previously hospitalised). The natural question is: ”how can 
we count Rt and compare this variable with the real data ?”. The 
current statistics, produced by the Ministries of Health of various 
Countries, concern the people released from the hospitals. A part 
from Luxembourg (where the entire population has been subject to 
the COVID-19-test), no other Countries are in a condition to pro-
vide statistics regarding the total people recovered by COVID-19. 
Hence, it is our opinion that the equation for Rt, is not useful since 
it is practically impossible to compare Rt with the experimental 
data.

6.2. Equation for the Deceased People

The rate of deceased people per unit time is modelled by the fol-
lowing dimensionless equation

               (31)

The meaning of Eq. (31) is the following. Manifestly, the rate of 
deaths is proportional to the number of active people. However, 
individuals infected by SARS-CoV-2 do not die instantly since the 
rate of deaths at time t is proportional to the people who were infect-
ed at an earlier time t − td (td > 0) with td denoting the time-delay. 
We indicate with αd the, time-independent, constant proportion-
al to the increase of the deaths dt. The second term, 
, models the presence of the lockdown measures, having the effect 
of saturating
12Eq. (29) models a hospital’s ability to heal people and, by no 
means, it must be linked to the number of people tested positive 
for COVID-19 or to the mortality rate caused by the SARS-CoV-2.
13Notice that Eq. (30) is the dynamic equation for the total recov-
ered people adopted

in the Susceptible-Infectious-Recovered-Deceased-Model (SIRD-
model) [29]. The comparison between our model with the SIRD-
model will be found soon in Ref. [30].

the rate of infected people and, consequently, of deaths. Indeed, in 
the absence of lockdown measures, we may approximatively write

               (32)

with αr denoting a positive constant. The purpose of the lock-
down measures is to decrease the number of infected people, and 
therefore deaths. We may assume that the effect of the lockdown 
measures is proportional to  such as to dampen the linear 
growth of the mortality rate. In other terms, we get

                (33)

which combined with Eq. (32) gives Eq. (31).

6.3 Equation for the Positive People

Of course, during the descent phase, the number of active people 
nt satisfies a simple law of conservation: If we are in the situation 
where there are no longer new cases of people tested positive for 
COVID-19 and if we assume that the active people cannot leave 
their country of origin (or else, if they do, they will be rejected by 
the host Country), then the number of infected people cannot but 
decrease either because some people are deceased or because oth-
ers have been recovered. In mathematical terms

     (34) 

with h0, d0 and n0 denoting the values of ht, dt and nt evaluated at 
the time

t = tMax (see Eq. (17) i.e., the time that maximises the number of the 
total cases), respectively. It should be noted that the conservation 
law (34) applies only when there are no longer new cases of people 
tested positive to COVID- 1914. Here, by the descending phase we 
mean the phase where Eq. (34) applies. To sum up, the equations 
describing the descending phase are

    with        (35)       

 with 

  with 

   with  day
14So, Eq. (34) does not apply necessarily as soon as the number 
nt (the number of people tested positive for COVID-19) starts 
to decrease. Indeed, it may happen that nt decreases because, for 
example, the number of new cases of people tested positive is less 
than the number of the people who have recovered in the mean-
time. Conservation law (34) applies only from the moment where 
the number of new cases of people tested positive is strictly equal 
to zero.

with tMax given by Eq. (17). Notice that the first two equations of 
system (35) are valid also during the ascending-phase. Of course, 

http://http://acmcasereports.com/


in this case, the initial conditions are rt=0 = 0, dt=0 = 0 and nt=0 = 
0. Hence, during the ascending phase the evolution equations are

   with                 (36)

 with 

  with 

 

   with  day

According to our expectations, by solving numerically system (36), 
with good

approximation, we get

                 (37)

Next, we find the numerical solution of systems (35)-(36) for Ita-
ly and Belgium. A similar analysis for Luxembourg is reported in 
Appendix.

6.4. Theoretical Predictions for the Descending Phase

In this subsection, we report the numerical solutions of Eqs (35)-
(36) for Italy and Belgium. The solution for Luxembourg can be 
found in the Appendix. Fig. (10) and (11) concern the Italian sit-
uation. They show the numerical solution of Eqs (35)-(36) for the 
number of recovered people and deaths, respec- tively. These the-
oretical predictions are plotted against the experimental data re-
ported in the (Table 1). According to the theoretical predictions, 
for Italy we get tIT d = 12 days. (Figure 12), illustrates the descen-
dant-phase for Italy.

Figure 12: The descending phase for Italy. According to the theoretical predictions, 
after two months the lockdown measures may heavily be lightened and we can 
return to normal work.  The estimated t imedelay is  d = 12 days see Eq. (35) 
and validated by the X2-tests, we determined a general differential equation, having 
two-free parameters, which we propose for 13 respiratory infectious diseases

(Figure 13, 14) refer to the Belgian situation. The figures illustrate 
the numerical solutions of Eqs (35)-(36) for the number of recov-

ered people and deaths, respectively. The theoretical predictions are 
plotted against the experi- mental data reported in the (Table 3). 
According to the theoretical predictions, for Belgium we get tBEd 
= 8.8 days. (Figure 15) shows the descendant-phase for Belgium.

Figure 13: Belgian situation. Theoretical predictions (blue line) against the experi-
mental  data (black circles) for the recovered people.

Figure 14: Belgian situation. Theoretical predictions (blue line) against the ex-
perimental data (black circles) for the deceased people.

Figure 15: The descending phase for Belgium. According to the theoretical 
predictions, after one month the lockdown measures may heavily be lightened and 
we can return to normal work.  The estimated t imedelay is   = 8.8   days see 
Eq. (35).
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Table 3: Situation in Belgium on 15 May 2020. Columns report the number of active 
people (currently infected by  SARS-CoV-2), the number of recovered people, and 
the number  of deceased people.

Date Active Recovered Deceased Total cases
29-Feb 1 0 0 1
1-Mar 1 0 0 1
2-Mar 6 0 0 6
3-Mar 13 0 0 13
4-Mar 23 0 0 23
5-Mar 50 0 0 50
6-Mar 109 0 0 109
7-Mar 169 0 0 169
8-Mar 200 0 0 200
9-Mar 239 0 0 239
10-Mar 267 0 0 267
11-Mar 311 0 3 314
12-Mar 396 0 3 399
13-Mar 556 0 3 599
14-Mar 686 0 4 689
15-Mar 881 1 4 886
16-Mar 1052 1 5 1058
17-Mar 1218 20 5 1243
18-Mar 1441 31 14 1486
19-Mar 1619 155 21 1795
20-Mar 2016 204 37 2257
21-Mar 2485 263 67 2815
22-Mar 2986 340 75 3401
23-Mar 3305 350 88 3743
24-Mar 3737 410 122 4269
25-Mar 4234 547 178 4937
26-Mar 5340 675 220 6235
27-Mar 6398 858 289 7284
28-Mar 7718 1063 353 9134
29-Mar 9046 1359 431 10836
30-Mar 9859 1527 513 11899
31-Mar 10374 1696 705 12775
1-Apr 11004 2132 828 13964
2-Apr 11842 2495 1011 15348
3-Apr 12755 2872 1143 16770
4-Apr 13901 3247 1283 18431
5-Apr 14493 3751 1447 19691
6-Apr 15196 3986 1632 20814
7-Apr 16002 4157 2035 22194
8-Apr 16482 4681 2240 23403
9-Apr 17296 5164 2523 24983
10-Apr 18080 5568 3019 26667
11-Apr 18686 5986 3346 28018
12-Apr 19584 6463 3600 29647
13-Apr 19979 6707 3903 30589
14-Apr 20094 6868 4157 31119
15-Apr 22025 7107 4440 33573

7. Conclusions

In this work we studied the spread of SARS-CoV-2 until when the 
strict lock- down measures have been adopted (i.e. until 16th May 
200). The dynamics of COVID-19 when the population is under 
less restrictive lockdown measures will be subject of future studies. 
Through fitting techniques previously performed, caused by virus-
es, including SARS-CoV-2. The solution of Eq. (14) provides the 
number of the total case in time. Successively, we compared the 
theoretical predictions, provided by the solution of Eq. (14) and by 
the logistic model

(see Eq. (7)), with the real data for Italy and Belgium (for Luxem-
bourg see Appendix). We saw that the solution of Eq. (14) is in 
good agreement with the experimental data since the beginning 
of the appearance of the COVID-19; this is not the case for the lo-
gistic model which applies only to the few last days. We found the 
days where the maximum number infected people by COVID-19 
will be reached in Italy and Belgium by parametrising the solution 
of Eq. (14) with experimental data: we get, tMaxIT 21 April 2020 and 

tMaxBE 2 May 2020 for Italy and Belgium, respectively.

We also noted, empirically, that the infection process caused by 
SARS-CoV-2 may be divided into three qualitatively different peri-
ods; i.e., the exponential period, the transient period and the bell-
shaped period (or the post-transient period). The solution of Eq. 
(14) allows defining more precisely these three periods. Indeed, we 
may classify the above periods as follows

The exponential period  for        (38) 

The transient period  for  

The bell-shaped period  for  

With tLM indicating the dimensionless time when the lockdown 
measures are applied and tflex the dimensionless inflection point of 
the solution of Eq. (14), respectively. It is easily checked that, for 
large values of KN, the value of tˆf lex satisfies, approximatively, the 
equation

 with

                                                                    (39)

Hence, according to Eq. (39), the transient period ended on 31 
March 2020 for Italy and on 7 April 2020 for Belgium, respectively. 
The second part of the work is devoted to modelling the descend-
ing phase, i.e. the decrease of the number of people tested positive 
for COVID-19. Also in this case, we proposed a new set of dynamic 
differential equations that we solved numerically. The solution of 
Eqs (35) (and Eq. (36)) provided valuable information such as the 
duration of the COVID-19 epidemic in a given Country and there-
fore when it will be possible to return to normal life.
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9. Appendix: Comparison between the Theoret- ical Pre-
dictions of Eq. (14) and Experimental Data for Luxem-
bourg

We have stressed the main difference between the closed systems 
and the open systems. Luxembourg, due to the particularly severe 
lockdown measures adopted by the government, may be consid-
ered, with good approximation, as a closed system (628108 inhabi-
tants, most of them concentrated in only one town). In- deed, right 
from the start, the city of Luxembourg was literally closed and citi-
zens were unable to enter and leave the city freely (people who had 
to enter in the city for working reasons were obliged to undergo 
each time the test that, of course, had to result negative).

Italy, on the other hand may be considered, with a god approxima-
tion, as an open system (60317116 inhabitants dislocated in all the 
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Country). In Italy, especially during the initial phase, the citizens of 
northern Italy moved freely to the south of Italy, by train, by plans 
or by car. Only in a second time the Italian government decided to 
introduce much more restrictive measures concerning the move-
ment of citizens from one region to another.

For the reason mentioned above, it is our opinion that it is very 
interesting to analyse these two Countries, Luxembourg and It-
aly, which are so different with each other. In this Appendix we 
report the comparison between the theoretical predictions of the 
COVID-19 model (14) and the real data for Luxembourg up-
date to 15 May 2020 (see (Figure 16)). In the columns of (table 
5) we can find the number of active people (currently infected by 
SARS-CoV-2), the number of recovered people, and the number 
of deceased people, respectively. The experimental data have been 
found in the databases [31, 32]. Luxembourg reached its peak on 
12 April 2020.

Table 4: Situation in Belgium on 15 May 2020. Columns report the number of active 
people (currently infected by  SARS-CoV-2), the number of recovered people, and 
the number  of deceased people.

Date Active Recovered Deceased Total cases

16-Apr 22390 7562 4857 34809
17-Apr 23014 7961 5163 36138

18-Apr 23346 8384 5453 37183

19-Apr 24056 8757 5683 38496

20-Apr 25260 8895 5828 39983

21-Apr 25296 9002 5998 40956

22-Apr 26194 9433 6262 41889

23-Apr 26507 9800 6490 42797

24-Apr 27492 10122 6679 44293

25-Apr 27991 10417 6917 45325
26-Apr 28255 10785 7094 46134
27-Apr 28602 10878 7207 46687
28-Apr 29060 10943 7331 47334
29-Apr 29075 11283 7501 47859
30-Apr 29349 11576 7594 48519
1-May 29437 11892 7703 49032
2-May 29541 12211 7765 49517
3-May 29753 12309 7844 49906
4-May 29965 12378 7924 50267
5-May 30052 12441 8016 50509
6-May 29711 12731 8339 50781
7-May 30025 12980 8415 51420
8-May 30289 13201 8521 52011
9-May 30604 13411 8581 52596
10-May 30783 13642 8656 53081
11-May 31045 13697 8707 53449
12-May 31286 13732 8761 53779
13-May 31201 13937 8843 53981

14-May 31274 14111 8903 54288

15-May 31384 14301 8959 54644

16-May 31524 14460 9005 54986

17-May 31598 14630 9052 55280
18-May 31822 14657 9080 55559
19-May 31996 14687 9108 55791
20-May 31986 14847 9150 55983
21-May 32061 14988 9186 56235
22-May 32176 15123 9212 56810

23-May 32418 15155 9237 56810

24-May 32540 15272 9280 57092

25-May 32733 15297 9312 57342

26-May 32801 15320 9334 57455

27-May 32763 15465 9364 57592
28-May 32889 15572 9388 57849

Figure 16: Situation in Luxembourg on 15 May 2020. The black dots correspond 
to real data. The red dotted line corresponds to the situation in Luxembourg before 
the adoption of the lockdown measures. The blue and the red solid lines correspond 
to the theoretical predictions for Luxembourg according to the solution of Eq. (14) 
and the logistic model, respectively.  Solution of Eq. (14) fits well all the experimen-
tal data from the initial days (i.e., from the 29th of February 2020), while the logistic 
model applies only to the first data. The values of the parameters of Eq. (14) and 
the logistic function (10) are:  c3.2 days ( = 2.2 days), 6880, 
and 40 days for Eq. (14), and 3.2 days (  = 2.2 days),  
= 3950,  = 30 days for the Logistic function, respectively. The zone I corre-
sponds to the period before the adoption of the lockdown measures.

10.1. The Descending Phase for Luxembourg

(Figures 17, 18) refer to the Luxembourg situation. The figures il-
lustrate the numerical solutions of Eqs (35) -(36) for the number 
of recovered people and deaths, respectively. The theoretical pre-
dictions are plotted against the experimental data, which can be 
found in the (Table 5 Figure 19) shows the descending phase for 
Luxembourg.

Table 5: Situation in Luxembourg on 15 May 2020. Columns provide the number of 
active people (currently infected by  SARS-CoV-2), the number of recovered peo-
ple, and the number  of deceased people.

Date Active Recovered Deceased Total cases
29-Feb 1 0 0 1
1-Mar 1 0 0 1
2-Mar 1 0 0 1
3-Mar 1 0 0 1
4-Mar 1 0 0 1
5-Mar 2 0 0 2
6-Mar 3 0 0 4
7-Mar 4 0 0 4
8-Mar 5 0 0 5
9-Mar 5 0 0 5
10-Mar 7 0 0 7
11-Mar 7 0 0 7
12-Mar 26 0 0 26
13-Mar 33 0 1 34
14-Mar 50 0 1 51
15-Mar 76 0 1 77
16-Mar 80 0 1 81
17-Mar 139 0 1 140
18-Mar 201 0 2 203
19-Mar 325 6 4 335
20-Mar 474 6 4 484
21-Mar 656 6 8 670
22-Mar 780 10 8 798
23-Mary 857 10 8 875
24-Mar 1081 10 8 1099
25-Mar 1315 10 8 1333
26-Mar 1434 10 9 1453
27-Maryy 1550 40 15 1605
28-Mar 1773 40 18 1831
29-Mar 1889 40 21 1950
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30-Mar 1926 40 22 1988
31-Mar 2115 40 23 2178
01-Apryy 2250 40 29 2319
2-Apr 2417 40 30 2487
3-Apr 2081 500 31 2612
4-Apr 2198 500 31 2729
5-Apr 2268 500 36 2804
6-Apr 2302 500 41 2843
7-Apr 2426 500 44 2970
8-Apr 2488 500 46 3034
9-Apr 2563 500 52 3115
10-Apr 2669 500 54 3223
11-Apr 2708 500 62 3270
12-Apr 2715 500 66 3281
13-Apr 2725 500 67 3292
14-Apr 2740 500 67 3307
15-Apr 2778 520 69 3373

Y Attention on the 23rd the figures instead of being given at 9 am are given at 5 pm.
YY Including 1 evacuated from France.

Table 6: Situation in Luxembourg on 15 May 2020. Columns provide the number of 
active people (currently infected by SARS-CoV-2), the number of recovered people, 
and the number  of deceased people.

Date Active Recovered Deceased Total cases
16-Apr 1008 2368 68 3444

17-Apr 919 2489 72 3480
18-Apr 858 2607 72 3537
19-Apr 799 2678 73 3550
20-Apr 759 2724 75 3558

21-Apr 735 2805 78 3618

22-Apr 689 2885 80 3654

23-Apr 619 2963 83 3665

24-Apr 582 3028 85 3695

25-Apr 539 3087 85 3711
26-Apr 532 3103 88 3723

27-Apr 520 3121 88 3729

28-Apr 531 3121 89 3741
29-Apr 546 3134 89 3769

30-Apr 481 3213 90 3784

1-May 497 3213 92 3802

2-May 402 3318 92 3812

3-May 349 3379 96 3824

4-May 327 3405 96 3828
5-May 332 3412 96 3840
6-May 301 3452 98 3851
7-May 254 3505 100 3859

8-May 245 3526 100 3871

9-May 226 3550 101 3877
10-May 199 3586 101 3886

11-May 185 3602 101 3888

12-May 182 3610 102 3894

13-May 172 3629 103 3904

14-May 147 3665 103 3915

15-May 137 3682 104 3923
16-May 127 3699 104 3930
17-May 136 3702 107 3945
18-May 125 3715 107 3947
19-May 131 3718 109 3958
20-May 134 3728 109 3971
21-May 130 3741 109 3980
22-May 124 3748 109 3981
23-May 123 3758 109 3990

24-May 115 3767 110 3992

25-May 102 3781 110 3993

26-May 102 3783 110 3995

27-May 100 3791 110 4001
28-May 95 3803 110 4008

Figure 17: Luxembourg situation. Theoretical predictions (blue line) against the ex-
perimental data (black circles) for the recovered people.

Figure 18: Luxembourg situation. Theoretical predictions (blue line) against the ex-
perimental data (black circles) for the deceased people.

Figure 19: The descending phase for Luxembourg. According to the theoretical 
predictions, after one month the lockdown measures may heavily be lightened 
and we can return to normal work.  The estimated t imedelay is  = 15 
days see Eq. (35).
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